José Guilherme de Almeida

PhD, computational biologist (they/them)

🔽 jose.almeida@	research.fchampalimaud.org	0000-0002-1887-0157
🌒 josegcpa.ml	🞧 github.com/josegcpa	bitbucket.org/josegcpa

Education

Oct 2017 – 2022	European Bioinformatics Institute and University of Cambridge <i>PhD in Computational Biology</i>
Sep 2015 – Sep	Universidade de Coimbra
2017	MSc in Cell and Molecular Biology with honours
Sep 2012 – Jul	Universidade de Coimbra
2015	BSc in Biochemistry

Relevant Research Experience

2022-current	Computational Clinical Imaging Group @ Champalimaud Foundation
	With Nikolaos Papanikolaou
	Post-doctoral fellow
	 Development of robust machine- and deep-learning methods for prostate cancer classification, detection and segmentation in magnetic ressonance imaging as a part of the ProCAncer-I consortium Development of self-supervised learning methods for MRI data Creation of reproducible pipelines for image registration and radiomic feature extraction
2017 - 2022	Cancer data science group @ EMBL-EBI
	Suvervised by Moritz Gerstung and George S. Vassiliou
	PhD fellow
	 Development of machine- and deep-learning methods to detect and characterize vast collections of cells in digitalised whole blood slides in a haematological cancer context. Predictive modelling of disease genotype using machine-learning methods to uncover cytomorphological profiles Statistical and Bayesian modelling of longitudinal targeted sequencing experiments to uncover the genetic and non-genetic factors driving clonal expansion. Phylogenetic and phylodynamic modelling of the lifelong trajectories of clones using single-cell colonies in healthy individuals
2016 - 2017	Data-driven molecular design group @ CNC-UC
	Supervised by Irina S. Moreira
	MSc student
	 Development of machine-learning protocols to determine hot-spots (important residues) in the binding interfaces of proteins
	• Structural and statistical analysis of large collections of protein-protein complexes and structural
	characterization of complexes with no known structure

Professional certificates

2023	Docker & Kubernetes: The Practical Guide Academind (online)	
2021	Probability theory: foundations for data science Colorado Boulder University (o	online)

2021 | Econometrics: methods and applications *Erasmus University Rotterdam (online)*

Skills

Programming	Python (advanced user), R (advanced user), C (beginner)
Machine-learning	Machine-learning — scikit-learn (Python), caret (R) Deep-learning — pytorch, lightning, MONAI, tensorflow, and related packages (Python)
Computer-vision	scikit-image, OpenCV (Python)
Statistical analysis	Frequentist methods Bayesian methods (particularly MCMC)
Data visualization	ggplot2 (R)
Workflows	Containerisation (Docker) Workflow management (snakemake)
Soft skills	 Teamwork — worked with international and pan-european teams on multiple projects Leadership and project management — helped assist and design the research agenda of students Communication — clear and precise communication of technical and scientific results to academic and laypeople audiences Adaptability — thanks to my skills in computational biology and programming, I have been able to quickly adapt to new fields such as evolutionary biology and clinical image analysis Work ethic — dedicated worker and passionate for solving meaningful problems Critical thinking — identifying novel strategies and adequately assessing them has been a key factor of my progress in academia

Teaching Experience

2019	EMBL Heidelberg
	2019 EMBL Lautenschlager Summer School
	Teaching young graduate students about practical bioimage analysis
2016	Universidade de Coimbra
2016	Universidade de Coimbra Workshops on Introductory Programming

Fellowships, awards and honors

2017	Universidade de Coimbra Merit fellowship for exceptional curricular performance during my MSc
2017 - 2022	European Molecular Biology Laboratory and support from the National Health Research Institute <i>PhD fellowship</i>

Peer-reviewed research grants

2018-2021	Fundação para Ciências e Tecnologia
	Deep learning in cancer drug discovery: a pipeline for the generation of new therapies
	Role: team member
2018-2021	Fundação para Ciências e Tecnologia
	Membrane proteins development of new computational approaches and its application to GPCRs
	Role: team member

Other activities

2016 - 2017	Junior Enterprise for Science and Technology (JEST) Co-founder JEST is a junior initiative I founded with a few colleagues that is dedicated to data science training among young students and services to external businesses
2018	20th EMBL PhD Symposium <i>Organization, speaker contact</i> Contacted different high-profile researchers to invite them to present at the 20th EMBL PhD Symposium
2019	EBI-Sanger-Cambridge PhD Symposium (eSCAMPS) 2019 Website design Developed and designed the website for the 2019 eSCAMPS

Languages

Portuguese	Native
English	Proficient
Spanish	Beginner

Scientific publications

2023	1.	De Almeida, J. G. , Gudgin, E., Besser, M., Dunn, W. G., <i>et al.</i> Computational analysis of peripheral blood smears detects disease-associated cytomorphologies. <i>en. Nat. Commun.</i> 14 , 4378 (July 2023)
2022	2.	Fabre, M. A., de Almeida, J. G. , Fiorillo, E., Mitchell, E., <i>et al.</i> The longitudinal dynamics and natural history of clonal haematopoiesis. <i>Nature (shared first-authorship with M Fabre),</i> 1–8 (2022).
2021	3.	Preto, A. J., Matos-Filipe, P., de Almeida, J. G. , Mourão, J. & Moreira, I. S. in <i>Artificial Neural Networks</i> 267–288 (Springer, 2021).
2020	4.	Preto, A. J., Barreto, C. A., Baptista, S. J., de Almeida , J. G., <i>et al.</i> Understanding the binding specificity of G-Protein coupled receptors toward G-proteins and arrestins: Application to the dopamine receptor family. <i>Journal of Chemical Information and Modeling</i> 60 , 3969–3984 (2020).
2019	5.	R Magalhães, P., Machuqueiro, M., Almeida, J. G. , Melo, A., <i>et al.</i> Dynamical rearrangement of human epidermal growth factor receptor 2 upon antibody binding: effects on the dimerization. <i>Biomolecules</i> 9 , 706 (2019).
2018	6.	Lemos, A., Melo, R., Preto, A. J., Almeida, J. G. , <i>et al.</i> In silico studies targeting G-protein coupled receptors for drug research against Parkinson's disease. <i>Current neuropharmacology</i> 16 , 786–848 (2018).
	7.	Melo, R., Lemos, A., Preto, A. J., Almeida, J. G. , <i>et al.</i> Computational approaches in antibody-drug conjugate optimization for targeted cancer therapy. <i>Current topics in medicinal chemistry</i> 18 , 1091–1109 (2018).
	8.	Melo, R., Lemos, A., Preto, A. J., Bueschbell, B., <i>et al.</i> An Overview of Antiretroviral Agents for Treating HIV Infection in Paediatric Population. <i>Current medicinal chemistry</i> (2018).
	9.	Preto, A. J., Almeida, J. G. , Schaarschmidt, J., Xue, L. C., <i>et al.</i> Computational Tools for the Structural Characterization of Proteins and Their Complexes from Sequence-Evolutionary Data. <i>Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation</i> , 1–19 (2018).
2017	10.	Almeida, J. G., Preto, A. J., Koukos, P. I., Bonvin, A. M. & Moreira, I. S. Membrane proteins structures: A review on computational modeling tools. <i>Biochimica et Biophysica Acta (BBA)-Biomembranes</i> 1859 , 2021–2039 (2017).
	12.	Almeida, J. G. , Bonvin, A. & Moreira, I. Using big-data to understand the protein interface landscape in Proceedings of MOL2NET 2017, International Conference on Multidisciplinary Sciences, 3rd edition (2017).
	13.	Bastos, F. C., Corceiro, V. N., Lopes, S. A., de Almeida, J. G. , <i>et al.</i> Effect of tolbutamide on tetraethylammonium-induced postsynaptic zinc signals at hippocampal mossy fiber-CA3 synapses. <i>Canadian Journal of Physiology and Pharmacology</i> 95 , 1058–1063 (2017).
	14.	Moreira, I. S., Koukos, P. I., Melo, R., Almeida, J. G. , <i>et al.</i> SpotOn: high accuracy identification of protein-protein interface hot-spots. <i>Scientific reports</i> 7 , 1–11 (2017).
	15.	Sensoy, O., Almeida, J. G. , Shabbir, J., Moreira, I. S. & Morra, G. in <i>Methods in Cell Biology</i> 205–245 (Academic Press, 2017).
	16.	Structural mechanism of HER2-antibodies complexes by molecular dynamics studies in Proceedings of MOL2NET 2017, International Conference on Multidisciplinary Sciences, 3rd edition (2017), 5084.

Conference presentations

2021	The Natural History of Clonal Haematopoiesis, CRUK Cambridge Centre Early Detection Programme 6th Annual Symposium, Cambridge
2020	Leveraging Automated Blood Cell Morphology for Myelodysplastic Syndrome Diagnosis and Prognosis Predic- tion, <i>Quantitative Biolmaging Conference</i> , Oxford
2017	Using big-data to understand the protein interface landscape, <i>Encontro de Jovens Investigadores de Biologia</i> <i>Computacional Estrutural</i> , Coimbra
2016	A Machine Learning Based Protein-Protein Hot-Spot Prediction Method — SpotOn, <i>Encontro de Jovens Investigadores de Biologia Computacional Estrutural</i> , Lisbon